Effective permittivity for resonant plasmonic nanoparticle systems via dressed polarizability
نویسنده
چکیده
We present an effective medium theory for resonant plasmonic nanoparticle systems. By utilizing the notion of dressed polarizability to describe dipolar particle interactions, we show that even highly concentrated, resonant plasmonic particles can be correctly described by the effective medium theory. The effective permittivity tensor of a nanoparticle monolayer is found explicitly and the resulting absorbance spectrum is shown to agree with rigorous numerical results from the FDTD model. The effective theory based on dressed polarizability provides a powerful tool to tailor resonant optical behaviors and design diverse plasmonic devices. ©2012 Optical Society of America OCIS codes: (240.6680) Surface plasmons; (160.3918) Metamaterials. References and links 1. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005). 2. W. Zhang, B. S. Yeo, T. Schmid, and R. Zenobi, “Single molecule tip-enhanced Raman spectroscopy with silver tips,” J. Phys. Chem. C 111(4), 1733–1738 (2007). 3. N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: Nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005). 4. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008). 5. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23(17), 1331–1333 (1998). 6. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010). 7. T. Ming, X. Kou, H. Chen, T. Wang, H.-L. Tam, K.-W. Cheah, J.-Y. Chen, and J. Wang, “Ordered gold nanostructure assemblies formed by droplet evaporation,” Angew. Chem. Int. Ed. Engl. 47(50), 9685–9690 (2008). 8. M. Quinten and U. Kreibig, “Absorption and elastic scattering of light by particle aggregates,” Appl. Opt. 32(30), 6173–6182 (1993). 9. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003). 10. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004). 11. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley-VCH Verlag GmbH & Co. KGaA., 1998). 12. T. C. Choy, Effective Medium Theory: Principles and Applications (Oxford University Press, 1999). 13. R. Ruppin, “Validity range of the Maxwell-Garnett theory,” Phys. Status Solidi B 87(2), 619–624 (1978). 14. R. G. Barrera, G. Monsivais, and W. L. Mochán, “Renormalized polarizability in the Maxwell Garnett theory,” Phys. Rev. B Condens. Matter 38(8), 5371–5379 (1988). 15. R. Barrera, M. del Castillo-Mussot, G. Monsivais, P. Villaseor, and W. Mochán, “Optical properties of twodimensional disordered systems on a substrate,” Phys. Rev. B Condens. Matter 43(17), 13819–13826 (1991). 16. M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarization,” Opt. Lett. 8(11), 581–583 (1983). 17. A. Moroz, “Depolarization field of spheroidal particles,” J. Opt. Soc. Am. B 26(3), 517–527 (2009). 18. A. Vial, “Implementation of the critical points model in the recursive convolution method for modelling dispersive media with the finite-difference time domain method,” J. Opt. A, Pure Appl. Opt. 9(7), 745–748 (2007). 19. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006). 20. P. B. Johnson and R. W. Christy, “Optical constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972). #168798 $15.00 USD Received 17 May 2012; revised 29 Jun 2012; accepted 29 Jun 2012; published 5 Jul 2012 (C) 2012 OSA 16 July 2012 / Vol. 20, No. 15 / OPTICS EXPRESS 16480 21. R. Rojas and F. Claro, “Electromagnetic response of an array of particles: normal-mode theory,” Phys. Rev. B Condens. Matter 34(6), 3730–3736 (1986).
منابع مشابه
Anomalous absorption, plasmonic resonances, and invisibility of radially anisotropic spheres
This article analyzes the response of a sphere with radially anisotropic permittivity dyadic (RA sphere), in both the electrostatic and full electrodynamic settings. Depending on the values and signs of the permittivity components, the quasistatic polarizability of the RA sphere exhibits several very different interesting properties, including invisibility, field concentration, resonant singula...
متن کاملLight Scattering by a Dielectric Sphere: Perspectives on the Mie Resonances
Light scattering by a small spherical particle, a central topic for electromagnetic scattering theory, is here considered. In this short review, some of the basic features of its resonant scattering behavior are covered. First, a general physical picture is described by a full electrodynamic perspective, the Lorenz–Mie theory. The resonant spectrum of a dielectric sphere reveals the existence o...
متن کاملOptical nanoswitch: an engineered plasmonic nanoparticle with extreme parameters and giant anisotropy
Naturally available optical materials are known to provide a wide variety of electric responses, spanning from positive to negative permittivity values. In contrast, owing to drastically modified conduction properties at the microscopic level, at such high frequencies magnetism and conductivity are very challenging to realize. This implies that extreme (high or low) values of permittivity, alth...
متن کاملPlasmonic resonant solitons in metallic nanosuspensions.
Robust propagation of self-trapped light over distances exceeding 25 diffraction lengths has been demonstrated for the first time in plasmonic nanosuspensions. This phenomenon results from the interplay between optical forces and enhanced polarizability that would have been otherwise impossible in conventional dielectric dispersions. Plasmonic nanostructures such as core-shell particles, nanoro...
متن کاملDissimilar permittivity and permeability sensitivities in nonlinear plasmons and spoof plasmons.
We show that employing localized surface plasmon resonators to probe environmental media will always lead to dissimilar optical sensitivities to permittivity and permeability. We find that while the permittivity sensitivities of diverse plasmonic structures display a geometry-independent universal scaling relation, the permeability sensitivities are highly dependent on the metals' geometries an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012